"
Как уберечь двигатель"
Зима сдала позиции, в хозяйствах техника работает уже в полную силу, прорываясь не только через погодные заслоны. Наступает новый сезон... Новые надежды, новые достижения. Обиднее всего, когда узнаем, что кто-то опять «наступил на старые грабли»...Поступают жалобы на выход из строя коленвалов, поршневых групп и блоков двигателей ЯМЗ. При ближайшем рассмотрении причиной является НАРУШЕНИЕ ПРАВИЛ ЭКСПЛУАТАЦИИ ДВИГАТЕЛЕЙ.
Вода крепче стали?
Двигатели Ярославского моторного завода имеют большой срок службы, надежны и удобны в эксплуатации. Однако исправная работа и длительный срок службы двигателей в значительной степени зависят от регулярного и правильного технического обслуживания их во время эксплуатации.
Так, из-за несвоевременного и неправильного обслуживания воздухоочистителя на тракторах Т-150, Т-150К и их модификациях происходят отказы в работе двигателей ЯМЗ-236.
Наиболее распространенные отказы:
1.«гидроудар» в цилиндре двигателя;
2.пылевой износ цилиндро-поршневой группы.
Остановимся более подробно на каждом из отказов и причинах, вызывающих их.
Чаще всего «гидроудар» происходит из-за проникновения воды через негерметичный воздухоочиститель во впускной тракт и далее в цилиндр двигателя во время стоянки трактора под открытым небом.
Вода также может попасть и через открытый глушитель трактора во впускной тракт и далее в тот цилиндр, в котором поршень только прошел в.м.т. (верхнюю мертвую точку) и остановился в начале такта впуска. Известно, что закрытие выпускного клапана происходит после в.м.т. при повороте коленвала на 20о.
При запуске двигателя, если объем воды, попавшей в цилиндр, превышает объем камеры сгорания, поршень данного цилиндра в конце такта сжатия, не дойдя до в.м.т., «упрется в воду». До этого в других цилиндрах произойдет воспламенение рабочей смеси и на коленчатом валу появится вращающий момент. Итак, вода не дает поршню пройти в.м.т., а за счет работы других цилиндров коленчатый вал, вращаясь, давит на него через шатун. Происходит «гидроудар» в цилиндре, с деформацией (изгибом) шатуна и подрывом поршня, после чего коленчатый вал делает оборот. При такте выпуска открывается выпускной клапан и воду выбрасывает в выхлопную систему. Двигатель начинает работать. Из-за того, что в цилиндре с изогнутым шатуном поршень не доходит до в.м.т., степень сжатия гораздо меньше допустимой для нормального воспламенения и сгорания рабочей смеси, данный цилиндр не работает. Двигатель работает неустойчиво, дымит. Механизатор начинает искать причину отказа цилиндра: проверяет форсунки, регулировку клапанов, работу секций ТНВД. Но, при положительных результатах проверок, цилиндр не работает. Не найдя причину отказа, обращаются к специалистам. В итоге, отказ устраняется заменой, в лучшем случае, шатуна, гильзы, поршня, колец данного цилиндра. Однако некоторые «специалисты», не найдя ответ, продолжают работать «на пяти» цилиндрах, после чего происходит разрыв шатуна в месте изгиба или разрыв поршня в месте соединения с поршневым пальцем, и разрушение блока цилиндров и других деталей двигателя.
Как же предотвращать гидроудар?
Во-первых, необходимо обеспечить герметичность воздухоочистителя. Верхняя крышка воздухоочистителя должна иметь выпуклую форму, обеспечивающую слив воды с нее, и не иметь трещин. Под зажимом («барашком») должна быть резиновая прокладка, прижатая зажимом через шайбу и уплотняющая верхнее отверстие крышки таким образом, чтобы прокладку не выдавливало и через отверстие не просачивалась вода.
Часто зажим верхней крышки перетягивают так, что крышка деформируется и приобретает вогнутую форму в виде тарелки. При стоянке трактора во время дождя вода не стекает с крышки, а застаивается в ней, проникая через плохое уплотнение зажима или трещины в крышке через фильтры, или минуя их, прямо по стержню стяжки (если плохое уплотнение под зажимами фильтров) во впускной тракт двигателя. Так же необходимо проверять целостность колпака моноциклона, корпуса воздухоочистителя.
Герметичность выхлопной сис-темы обеспечивается целостностью глушителя. Крышка глушителя, при неработающем двигателе, должна быть всегда закрыта.
Мойку трактора производить при закрытом моноциклоне воздухоочистителя, предотвратив попадание воды из-за боковой струи через сетку и завихритель моноциклона. Во время длительной стоянки трактора на улице необходимо закрывать воздухоочиститель и трубу глушителя полиэтиленом.
Во-вторых, чтобы предотвратить «гидроудар» при пуске холодного двигателя необходимо установить скобу регулятора ТНВД в положение выключенной подачи топлива, в течение 5…10 сек. проворачивать стартером коленчатый вал двигателя. Если коленчатый вал свободно вращается, произвести пуск двигателя. Если же коленчатый вал не проворачивается, прекратить пуск и устранить причину. При попадании воды в цилиндр необходимо снять форсунки, проворачивая коленчатый вал двигателя, удалить воду из цилиндра. Установив обратно форсунки, проверить свободно ли проворачивается коленчатый вал двигателя, после чего производить пуск.
В случае если стартер прокручивает коленвал без подачи топлива, масляный насос подает масло к трущимся деталям перед запуском двигателя, что существенно продлевает срок службы этих деталей. Однако помните, что продолжительность непрерывной работы стартера не должна превышать 10 сек. Более длительная непрерывная работа стартера приведет к перегреву его электродвигателя и выходу стартера из строя. Поэтому повторный пуск можно производить спустя 1-2 минуты.
На тракторах Т-150, Т-150К с двигателями СМД-60 и СМД-62 запуск основного двигателя производится «пускачом». Из-за попадания воды в основной двигатель «пускач» глохнет, при включении муфты и двигатель не запускается. Особенность двигателя ЯМЗ-236 - стартерный запуск, поэтому надо уделять особое внимание вышеперечисленным рекомендациям.
Пыль «съедает» металл
Из-за несвоевременного и неправильного обслуживания воздухоочистителя трактора происходит не только «гидроудар» в цилиндре, но и пылевой износ цилиндро-поршневой группы двигателя. Так, несвоевременное обслуживание воздушного фильтра ухудшает очистку воздуха и приводит к проникновению пыли в двигатель, что и вызывает повышенный износ цилиндро-поршневой группы и преждевременный выход двигателя из строя. Пыль может попадать в двигатель и через негерметичные соединения деталей впускного тракта, которые возникают из-за: ослабления их крепежа, неправильной установки уплотнительных прокладок или разрушения деталей тракта. При попадании пыли с воздухом во впускной тракт и далее в цилиндры двигателя происходит абразивный износ: внутренних поверхностей гильз, наружных поверхностей поршней, поршневых колец, канавок на поршнях для поршневых колец. Верхнее компрессионное кольцо принимает на себя, практически, всю пыль, проникающую в цилиндр. Поэтому кольцо подвержено усиленному износу, а канавка на поршне под верхнее компрессионное кольцо разбивается абразивом в большой степени, чем канавки нижних колец. Вследствие этого зазор между канавкой поршня и верхним кольцом увеличивается и становится во много раз больше допустимого. Компрессионное кольцо лопается, а поверхность поршня в зоне канавки под верхнее кольцо начинает выгорать. Осповидное выгорание боковой поверхности поршня «открывает» ход кускам лопнувшего кольца в камеру сгорания. Куски кольца, «проникая» через боковые прогары на поршне, попадают между днищем поршня и головкой блока цилиндров. В двигателе появляется стук, из сапуна начинают сильно идти газы. Хотя утечка газов из сапуна усиливается еще до стука, по мере пылевого износа цилиндро-поршневой группы. Так же изнашиваются канавки на поршнях под нижние поршневые кольца и сами кольца, но в меньшей степени, чем верхнее кольцо.
Кроме того, пыль, проникая в смазочное масло, служит причиной преждевременного износа и других трущихся поверхностей двигателя.
Чтобы предотвратить пылевой износ цилиндро-поршневой группы двигателя, необходимо своевременно и правильно производить техническое обслуживание воздухоочистителя и впускного тракта двигателя. Так как трактор работает, практически, постоянно в условиях сильной запыленности, данное техническое обслуживание необходимо производить ежедневно. При этом проверять впускной (воздушный) тракт двигателя на предмет попадания пыли, т.е. затяжку болтов крепления, состояние его деталей, особенно уплотнительных прокладок и правильную их установку.
При проведении обслуживания воздухоочистителя очищайте выбросные щели колпака моноциклона и защитную сетку. При очистке щелей не допускается изменение их ширины, которая должна быть равна 1,5 мм. Далее очистите, продуйте основной фильтр-патрон, который задерживает всю пыль, поступающую с воздухом в воздухоочиститель. Загрязнение предохранительного фильтр-патрона указывает на повреждение основного фильтр-патрона (прорыв бумажной шторы, отклеивание донышек). В этом случае необходимо продуть предохранительный фильтр-патрон, а основной заменить новым. При отсутствии пыли на предохранительном фильтр-патроне основной обслуживается в следующем порядке:
·отвернуть гайку-барашек и снять крышку;
·отвернуть внутреннюю гайку-барашек корпуса и вынуть из корпуса основной фильтр-патрон, вытряхнуть пыль, слегка постукивая по нему ладонью. Категорически запрещается стучать фильтром о твердые предметы. Вынимать из корпуса предохранительный фильтр-патрон не рекомендуется;
·Продуть основной фильтр-патрон сжатым воздухом сначала изнутри, а затем снаружи до полного удаления пыли. Во избежание прорыва бумажной шторы давление воздуха должно быть не более 0,2-0,3 МПа (2-3 кгс/см2).
При этом струю воздуха следует направлять под углом к боковой поверхности фильтр-патрона и регулировать давление воздуха изменением расстояния от наконечника шланга до поверхности фильтр-патрона. Во время обслуживания необходимо оберегать фильтр-патрон от механических повреждений и замасливания. Запрещается продувать фильтр-патрон выпускными газами.
Сборку воздухоочистителя производить в обратной последовательности, при этом проверить состояние всех уплотнительных колец, убедиться в правильной установке фильтр-патрона в корпусе и надежно затянуть гайки-барашки, проверив при этом уплотнение под ними. Во избежание повреждения фильтр-патрона не производите чрезмерную его затяжку. Также необходимо проверить затяжку болтов (гаек) крепления воздухоочистителя, качество и правильную установку прокладки.
Если же все указанные меры не были проведены вовремя, мотору потребуется серьезный ремонт.
Виды впрыска топлива GDI, режим TWO-STAGE MIXING, режим ULTRA-LEAN COMBUSTION MODE
Виды впрыска топлива GDI
Начнем с того, что двигатели 4G93 выпускаются двух типов : для «чисто» Японии и для Европы. И у них есть различия и, можно сказать, довольно основательные. И не только по конструкции двигателей, топливного насоса высоково давления, но и в самой системе впрыска топлива. Но для того, что бы и сейчас и в дальнейшем лучше и правильнее понимать друг друга, надо договориться о точности формулировок, что бы не возникало ни разночтений, ни разногласий…
Итак, начнем.
Для «чисто» Японии существуют всего два вида впрыска топлива на двигателях GDI:
режим работы на супер-обедненной топливо-воздушной смеси (режим ULTRA LEAN COMBUSTION MODE);
режим работы в стехиометрическом составе топливо-воздушной смеси (режим SUPERIOR OUTPUT MODE)
Для автомобилей, которые «европейцы», был добавлен еще один режим — ДВУХступенчатый впрыск топлива под названием режим TWO-STAGE MIXING.
Переключение режимов работы
ULTPA LEAN COMBUSTION MODE — в данном режиме двигатель работает на скорастях до 115 — 125 км/час при условии, что ускорение совершается спокойно, мягко и плавно, без резкого нажатия на педаль акселератора.
SUPERIOR OUTPUT MODE — этот режим работы включается на скорости свыше 125 км/час или в том случае, если на двигатель «падает» большая нагрузка (прицеп, затяжной подъем в гору и так далее).
TWO-STAGE MIXING — резкий старт с места или резкое ускорение при обгоне.
Переключение режимов из одного в другой происходит автоматически и практически незаметно для водителя, всем управляет бортовой компьютер.
Режим ULTRA-LEAN COMBUSTION MODE
При реализации данного режима двигатель GDI работает на супер-обедненной топливо-воздушной смеси, приблизительно в соотношениях от 37:1 до 43:1. За «идеальное» соотношение принимается 40:1.
Именно при таком соотношении топливо-воздушная смесь сгорает полностью на скоростях спокойного движения автомобиля (без ускорений) до 115—125 км\час и «выдает» наиболее максимальный крутящий момент на двигатель. Впрыск топлива происходит на такте сжатия, когда поршень еще не дошел до верхней мертвой точки . Топливо впрыскивается компактной струей и, закручиваясь по часовой стрелке, максимально пОлно размешивается воздухом. Время впрыска топлива составляет от 0.3 до 0.8 ms (за идеальное время принимается 0.5 ms).
Режим TWO-STAGE MIXING
Этот режим двухступенчатого впрыска топлива, то есть, топливо впрыскивается в цилиндр два раза за четыре такта движения поршня.
Посмотрим на рисунок:
Во время первого впрыска топлива на такте впуска состав топливо-воздушной смеси составляет всего такое соотношение, как 60:1.
Это «два раза супер-обедненная смесь»и в таком соотношении она никогда не загорится (не вопламенится) и служит, в основном, для того, что бы охладить камеру сгорания, потому что чем ниже будет ее температура, тем больше войдет туда на такте впуска воздуха и, значит, тем больше топлива — соответственно , можно подать туда на втором такте — такте сжатия (см. рисунок). То есть, все это придумано только для того, что бы увеличить коэфициент наполнения камеры сгорания (тут есть о чем подумать… например, о «черных» свечах зажигания GDI — как ни посмотришь, а они — «черно-черные». И практически — всегда и на всех двигателях, которые приходят на диагностику или ремонт).
А если конкретно, то на такте сжатия в камере сгорания получается состав топливо-воздушной смеси равный 12:1 (сверх-обогащенная топливо-воздушная смесь).
Время впрыска топлива:
на такте впуска — 0.5 — 0.8 ms;
на такте сжатия — 1.5 — 2.0 ms.
Все это позволяет получить максимальную мощность. Для сравнения, при одних и тех же оборотах, например, RPM 3000, двигатель GDI «выдает» на 10% больше мощности, чем тот же MPI (распределенный впрыск топлива).
Принцип действия турбонаддува
Смысл наддува двигателя внутреннего сгорания (ДВС) — улучшить наполнение цилиндров двигателя топливо-воздушной смесью для повышения среднего эффективного давления цикла и, как следствие, мощности двигателя путем принудительного увеличения заряда воздуха, поступающего в цилиндры. При этом существует лишь один вид атмосферного наддува — так называемый резонансный наддув, при котором используется кинетическая энергия объема воздуха во впускных коллекторах, и технически реализуемый с помощью воздушных коллекторов переменной длины и тщательной настройкой фаз газораспределения двигателя. Все остальные виды наддува связаны с увеличением давления поступающего в цилиндры воздуха выше атмосферного, используя для этого различные механические, электромеханические и газодинамические способы. При турбонаддуве в качестве привода используется отработавший газ, который в обычном случае просто выбрасывается в атмосферу, без утилизации его энергии в полезную работу (КПД).
При работе двигателя с турбонаддувом выхлопные газы подаются в турбину, где отдают часть своей энергии, раскручивая ротор турбокомпрессора, и затем поступают через приемную трубу в глушитель. На одном валу с лопаточным колесом турбины находится колесо компрессора, который засасывает воздух из воздушного фильтра, повышает его давление на 30-80% (в зависимости от степени наддува) и подает в двигатель. В один и тот же литраж (объем) двигателя поступает большее по весу количество рабочей смеси и, следовательно, обеспечивается достижение на 20-50% большей мощности, а за счет использования энергии выхлопных газов повышается КПД двигателя и снижается удельный расход топлива на 5-20%.
Среди ведущих мировых производителей и разработчиков дизельных двигателей в 90-е годы сформировалась концепция о том, что система турбонаддува является неотъемлемым компонентом современного экологически чистого двигателя. При этом турбонаддув, в отличие от 70-80-х годов, перестал рассматриваться как средство форсирования двигателей, и подавляющее большинство современных базовых моделей дизелей проектируются и разрабатываются с наддувом.
Турбонаддув бензиновых двигателей приобретает в настоящее время все более широкое распространение, несмотря на некоторые возникающие при этом проблемы. Первая — это детонация, появляющаяся вследствие повышенного давления конца такта сжатия и накладывающая ограничения по максимальной величине объемной степени сжатия в цилиндрах, и повышенные требования к качеству бензина, а именно к октановому числу. Во-вторых, предельно высокая максимальная температура рабочего цикла бензинового двигателя с турбонаддувом требует повышенного внимания к выбору материалов выпускной системы и лопаток турбины, конструкции корпусных деталей турбокомпрессора (ТКР), необходимости дополнительного охлаждения подшипникового узла ТКР, а также к эксплуатационным качествам моторного масла.
Образец механического нагнетателя
Механический нагнетательМеханические нагнетатели могут быть установлены в любом месте на двигателе, с одним условием — шкив нагнетателя должен быть выровнен по отношению к шкиву коленвала двигателя, т. к. нагнетатель приводится в действие ременной передачей. Механический нагнетатель имеет прямую связь с впускным коллектором и дроссельной заслонкой, соответственно, при монтаже необходимо учитывать расстояние от нагнетателя до дроссельной заслонки (впускной коллектор вопросов не вызывает). После установки нагнетателя необходимо настроить электронные системы управления двигателем.
На рисунке: принцип действия механического нагнетателя 4-го поколения Magnuson MP62.
Изящное решение без потери мощности - VTEC
Аббревиатура VTEC полностью расшифровывается следующим образом — Variable Valve Timing and Lift Electronic Control. В переводе на русский язык означает «электронная система управления временем открытия и высотой подъема клапанов» или, если говорить языком специалистов, электронная система регулировки фаз газораспределения. Этот механизм предназначен для того, чтобы оптимизировать прохождение воздушно-топливной смеси в камеры сгорания.
Двигатель внутреннего сгорания преобразует химическую энергию, накопленную в топливе, в тепловую. Такое преобразование происходит во время сгорания горючей смеси. При этом возрастает температура и давление в цилиндре. Под давлением поршни двигателя опускаются вниз и, толкая коленчатый вал, приводят его в движение. Так химическая энергия преобразуется в механическое движение. Механическая сила определяется величиной крутящего момента. Способность двигателя поддерживать некоторую величину крутящего момента при некотором числе оборотов в минуту определяется как мощность. Мощность определяет, какую работу может производить двигатель. Весь процесс, осуществляемый двигателем внутреннего сгорания, не эффективен на 100%. На самом деле всего около 30% энергии, содержащейся в топливе, преобразуются в механическую энергию.
Теоретическая физика говорит о том, что при данном КПД для достижения высокой отдачи от мотора необходимо использовать больше топлива: в результате существенно возрастет мощность. Очевидно, что в этом случае нужно использовать двигатель с огромным рабочим объемом и поступиться принципами экономичности. Другой метод диктует необходимость предварительно сжимать топливную смесь посредством турбины и затем сжигать ее в цилиндрах небольшого размера. Однако и в этом случае расход топлива будет пугающим. В свое время концерн Honda пошел по иному пути, начав исследования с целью оптимизации работы двигателя внутреннего сгорания. В результате появилась технология VTEC, наделяющая мотор отменной экономичностью на низких оборотах и высокой мощностью при его «раскручивании».
Два алгоритма
Если сравнить скоростные характеристики различных двигателей, то нетрудно заметить, что у одних максимум крутящего момента достигается на низких оборотах (в диапазоне 1800-3000 об/мин), у других — на более высоких (в диапазоне 3000-4500 об/мин). Оказывается, есть зависимость между тем, каким образом на распределительном валу установлены кулачки, открывающие клапаны, и тем, какую мощность развивает мотор на различных оборотах коленчатого вала. Чтобы понять, чем это вызвано, представьте себе двигатель, работающий крайне медленно. Например, при 10-20 оборотах в минуту рабочий цикл в одном цилиндре занимает 1 секунду. При опускании поршня впускной клапан открывается, позволяя горючей смеси наполнить цилиндр, и закрывается, когда поршень достигает нижней мертвой точки. После завершения цикла сгорания поршень начнет движение вверх. При этом откроется выпускной клапан, позволив отработавшим газам покинуть рабочий объем цилиндра и закроется, когда поршень достигнет верхней мертвой точки. Такой алгоритм был бы идеален, если бы мотор работал на минимуме оборотов. Однако в реальной жизни двигатель куда энергичней.
С ростом ритма работы мотора описанный алгоритм просто не выдерживает критики. Если число оборотов коленвала достигает 4000 в минуту, клапаны открываются и закрываются 2000 раз ежеминутно, или 30-40 раз каждую секунду. На такой скорости поршню чрезвычайно сложно всосать в цилиндр необходимый объем горючей смеси. То есть в результате впускного сопротивления возникают насосные потери, и это главная причина, по которой уменьшается эффективность работы двигателя. Для облегчения участи мотора при работе на больших оборотах приходится, например, шире открывать впускной клапан. Разумеется, это упрощенное описание работы, но оно дает общее представление. Однако на малых оборотах такой алгоритм не годится: настройка распредвала «на скорость» лишь увеличит расход топлива. Следовательно, для лучшей эффективности нужно сочетать оба алгоритма работы, которые воплощены в механизме VTEC.
Появившись в 1989 году, система VTEC дважды модернизировалась, и сегодня мы имеем дело с ее третьей серией. Система VTEC использует возможности электроники и механики и позволяет двигателю эффективно распоряжаться возможностями сразу двух распредвалов, или, в упрощенных версиях, одного. Контролируя число оборотов и диапазоны работы силового агрегата, его компьютер может активизировать дополнительные кулачки с тем, чтобы подобрать наилучший режим работы.
DOHC VTEC
В 1989 году на внутренний японский рынок поступили две модификации Honda Integra — RSi и XSi, использовавшие первый двигатель с системой DOHC VTEC. Ее силовой агрегат модели B16A при объеме 1,6 литра достигал мощности в 160 л. с., но при этом отличался хорошей тягой на низах, топливной экономичностью и экологической чистотой. Поклонники марки Honda до сих пор помнят и ценят этот великолепный мотор, тем более что его многократно усовершенствованный вариант и по сей день используется на моделях Civic.
Двигатель с системой DOHC VTEC имеет два pаспpедвала (один для впускных, другой для выпускных клапанов) и 4 клапана на цилиндр. Для каждой пары клапанов предусмотрена особая конструкция — группа из трех кулачков. Следовательно, если мы имеем дело с 4-цилиндровым 16-клапанным мотором с двумя распредвалами, то таких групп будет 8. Каждая группа занимается отдельной парой клапанов. Два кулачка расположены на внешних сторонах группы и отвечают за действие клапанов на низких оборотах, а средний подключается на высоких оборотах. Внешние кулачки непосредственно контактируют с клапанами: опускают их при помощи коромысел (рокеров). Отдельный средний кулачок до поры до времени вращается и вхолостую нажимает на свое коромысло, которое активируется при достижении определенного высокого числа оборотов коленвала. В дальнейшем эта центральная часть отвечает за открытие и закрытие клапанов, хотя и действует как специальный промежуточный механизм.
Когда двигатель работает на малом ходу, пары впускных и выпускных клапанов открываются соответствующими кулачками. Их форма, как и у большинства аналогичных моторов, выполнена в виде эллипса. Однако эти кулачки способны обеспечивать лишь экономичный режим работы двигателя и только на малых оборотах. При достижении высокой скорости вращения распредвала задействуется специальный механизм. «Незанятый» до этого работой средний кулачок вращался и без какого-либо эффекта нажимал на среднее коромысло, никак не связанное с клапанами. Однако во всех трех коромыслах предусмотрены отверстия, в которые под высоким давлением масла загоняется металлический пруток. Таким образом, группа жестко фиксируется и в дальнейшем работает как одно целое. Тут в работу вступает отдыхавший до этого средний кулачок. Он имеет более продолговатую форму и поэтому при его нажатии все три коромысла, а значит и клапана, опускаются гораздо ниже и на больший промежуток времени остаются открытыми. В этом случае двигатель может «дышать» свободнее, развивать и поддерживать высокий крутящий момент и хорошую мощность.
SOHC VTEC
После успеха системы DOHC VTEC компания Honda с еще большим рвением подошла к развитию и использованию своей новации. Моторы с VTEC проявили себя как надежные и экономичные, стали реальной альтернативой увеличению рабочего объема или использованию турбин. Поэтому несколько позднее была представлена система SOHC VTEC. Подобно своему «коллеге» DOHC новинка также предназначалась для оптимизации работы двигателя в разных режимах. Но из-за простоты своей конструкции и более скромных показателей мощности двигатели с SOHC VTEC выпускались меньшими объемами. Одним из первых двигателей, использующих упрощенную систему, стал обновленный агрегат D15B, выдававший 130 л. с. при объеме в 1,5 л. Этот мотор с 1991 устанавливался года на Honda Civic.
В моторе SOHC предусмотрен один-единственный распредвал на весь блок цилиндров. Поэтому кулачки впускных и выпускных клапанов располагаются на одной оси. Однако здесь также предусмотрены группы-тройки, в каждой из которых есть один специальный центральный кулачок. Простота конструкции заключается в том, что в двух режимах — для низких и для высоких оборотов — могут работать только впускные клапана. Промежуточный механизм с дополнительным кулачком и коромыслом также как и в случае с DOHC VTEC перехватывает на себя открытие и закрытие впускных клапанов, в то время как выпускные всегда работают в постоянном режиме.
Может создаться впечатление, что SOHC VTEC в чем-то хуже, чем DOHC VTEC. Однако это не так: эта система имеет ряд преимуществ, среди которых простота конструкции, компактность двигателя за счет его незначительной ширины, меньший вес. Кроме того SOHC VTEC возможно вполне легко использовать на двигателях пpедыдущего поколения, тем самым модернизируя их. В итоге силовые агрегаты с SOHC VTEC достигают тех же результатов, пусть и не столь ярких и удивительных.
SOHC VTEC-E
Если назначение описанных выше систем VTEC состоит в сочетании максимальной мощности на предельных оборотах и довольно уверенной, но экономичной работе на «низах», то VTEC-E призвана помочь двигателю в достижении предельной экономии.
Но прежде чем рассмотреть очередное изобретение Honda необходимо разобраться с теорией. Известно, что топливо предварительно смешивается с воздухом и затем воспламеняется в цилиндрах (есть еще иной вариант — непосредственный впрыск, при котором воздух и топливо поступают в цилиндры отдельно). На мощность двигателя также влияет и то, насколько однородна такая смесь. Дело в том, что на малых оборотах невысокая скорость потока при всасывании препятствует смешению топлива и воздуха. В результате на холостом ходу двигатель может работать неуверенно. Чтобы предотвратить это, в цилиндры поступает обогащенная топливом смесь, что сказывается на экономичности. Система VTEC-E способна обеспечить уверенную работу двигателя на малых оборотах на обедненной топливом горючей смеси. При этом также достигается существенная экономия. В отличие от других механизмов, в системе VTEC-E нет никаких дополнительных кулачков. Так как эта технология нацелена на снижение потребления топлива на малых оборотах, то и затрагивает она действие впускных клапанов. VTEC-E применяется только в SOHC-двигателях (с одним распредвалом) с четырьмя клапанами на цилиндp из-за его «склонности» к низкому расходу топлива.
В отличие от других VTEC-моторов, где кулачки имеют приблизительно одинаковый профиль, в силовых агрегатах с VTEC-E используются две конфигурации. Таким образом, впускные клапана приводятся в движение кулачками различной формы. Профиль одного из них имеет традиционную форму, а другой практически круглый — слегка овальный. Поэтому один из клапанов опускается в нормальном режиме, а другой едва приоткрывается. Горючая смесь проходит через нормальный клапан легко, а через приоткрытый — весьма скудно. Из-за несимметричности потоков поступающей смеси в цилиндре возникают причудливые "завихpения," в которых воздух и топливо смешиваются должным образом. В результате двигатель может pаботать на бедной смеси. С увеличением оборотов концентрация топлива растет, но режим, при котором реально работает лишь один клапан, становится помехой. Поэтому, приблизительно при достижении 2500 об/мин коромысла замыкаются и приводятся в движение нормальным кулачком. Замыкание происходит точно так же как и в других системах VTEC.
Систему VTEC-E часто незаслуженно считают изобретением, нацеленным исключительно на экономию. Тем не менее, по сравнению с простыми моторами, агрегаты с таким механизмом не только экономичнее, но и мощнее. За экономию отвечает первый режим, в котором работает один клапан, а за показатели мощности — «чистокровный» VTEC, подразумевающий широкое открытие впускных клапанов. Если сравнить два аналогичных мотора, один из которых оборудован механизмом VTEC-E, то простой агрегат окажется на 6-9% слабее и прожорливей.
Трехрежимный SOHC VTEC
Этот механизм представляет собой объединение системы SOHC VTEC и SOHC VTEC-E. В отличие от всех описанных выше систем эта имеет не два режима работы, а три. В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливовоздушной смеси (как VTEC-E). В этом случае используется только один из впускных клапанов. На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент. На режиме высоких оборотов оба клапана управляются одним центральным кулачком, отвечающим за снятие с двигателя максимальной мощности. Эта система достаточно универсальна. Так, например, двигатель объемом 1,5 литра с таким газораспределительным механизмом проявляет неплохую удельную мощность: 86 л. с. на 1 л. рабочего объема. Одновременно с этим, если двигатель работает в первом, экономичном 12-клапанном режиме, расход при движении с постоянной скоростью 60 км/ч на автомобиле Honda Civic составляет около 3,5 л на 100 км.
i-VTEC
Буква «i» в названии означает intelligent, то есть «умный». Прежние версии VTEC способны регулировать степень открытия клапанов лишь в 2-3 режимах. Конструкция нового газораспределительного механизма i-VTEC предполагает использование помимо основной системы VTEC дополнительную систему VTC (Variable Timing Control), непрерывно регулирующую момент начала открытия впускных клапанов. Открытие впускных клапанов задается в зависимости от нагрузки двигателя и регулируется посредством изменения угла установки впускного распределительного вала относительно выпускного. В двигателях с i-VTEC распредвал крепится к приводному шкиву через специальную гайку-шестерню, которая способная «доворачивать» его на угол до 600.
Применение системы VTC на ряду с VTEC позволяет эффективнее наполнять цилиндры двигателя топливо-воздушной смесью, а также улучшить полноту ее сгорания. Использование механизма i-VTEC позволяет достичь приемистости эквивалентной двигателям с рабочим объемом 2 литра, при этом топливная экономичность даже лучше чем у 1,6 литрового двигателя.
Семейство газораспределительных механизмов VTEC не представляет собой ничего волшебного, но дает просто поразительный эффект. Моторы Honda прямо-таки умеют подстраиваться под нагрузку, предоставляя удивительную мощность при скромном рабочем объеме. И в то же время на холостом и малом ходах японские моторы поражают выдающейся экономичностью. Вполне возможно, что следующим этапом в развитии систем VTEC станет механизм с отдельными соленоидами на каждый клапан, что позволит с хирургической точностью регулировать открытие клапанов.